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Using the Noninformative Families in Family-Based Association Tests:
A Powerful New Testing Strategy
Christoph Lange,1 Dawn DeMeo,2 Edwin K. Silverman,2 Scott T. Weiss,2 and Nan M. Laird1
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For genetic association studies with multiple phenotypes, we propose a new strategy for multiple testing with family-
based association tests (FBATs). The strategy increases the power by both using all available family data and
reducing the number of hypotheses tested while being robust against population admixture and stratification. By
use of conditional power calculations, the approach screens all possible null hypotheses without biasing the nominal
significance level, and it identifies the subset of phenotypes that has optimal power when tested for association by
either univariate or multivariate FBATs. An application of our strategy to an asthma study shows the practical
relevance of the proposed methodology. In simulation studies, we compare our testing strategy with standard
methodology for family studies. Furthermore, the proposed principle of using all data without biasing the nominal
significance in an analysis prior to the computation of the test statistic has broad and powerful applications in
many areas of family-based association studies.

Introduction

In many studies of genetic association between pheno-
types and genetic markers, samples of subjects, along with
their parents or other family members, are recorded. Fam-
ily-based association tests (FBATs) (Spielman et al. 1993;
Thomson 1995; Zhao 2000; Laird 2000) can then be
constructed by using the genetic data of family members
to derive the distribution of a test statistic under the null
hypothesis, conditioning on the observed phenotypes
(Rabinowitz and Laird 2000).

FBATs can be powerful tests for linkage between a
marker and a disease-susceptibility locus, in the pres-
ence of linkage disequilibrium between the two loci
(Risch and Merikangas 1996). In studies of complex
disorders, one may record a large number of phenotypes
related to the disorder. However, the phenotype with
the strongest genetic component attributable to the
tested marker is often not known prior to the analysis,
making it desirable to test all recorded phenotypes. This
can lead to many tests and therefore requires a correc-
tion for multiple testing. Standard adjustments for mul-
tiple testing (e.g., Bonferroni correction or Hochberg
correction) become severe when the number of tests is
large (i.e., the significance levels for the individuals tests
become unrealistically small). Although these methods
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are easily applied, they are unrealistically conservative
for many applications. In this setting, one may fail to
establish an overall significance between the phenotypes
and the marker locus of interest.

DeMeo et al. (2002) and Lange et al. (2003) suggested
reducing the number of null hypotheses by testing sev-
eral phenotypes simultaneously. They grouped pheno-
types into symptom groups and tested all phenotypes
of one symptom group simultaneously by a single mul-
tivariate test. They found significant associations that
could not be detected by univariate tests. However, it
is not always obvious how one should define such symp-
tom groups. DeMeo et al. relied on their “clinical in-
tuition” for their definition of the phenotype/symptom
groups, but this approach can be difficult when there
is little knowledge about the joint genetic components
of the phenotypes, and the results may not be re-
producible by other investigators.

In the present article, we propose a systematic ap-
proach to construct the most powerful FBAT statistic
for scenarios in which the genetic data are given and
multiple phenotypes have been recorded. The distri-
bution of FBATs under the null hypothesis is computed
by conditioning on the parental information and on
Mendel’s law of random segregation. Because the trans-
mission from a homozygous parent is not random, off-
spring with homozygous parents do not contribute to
the FBAT statistic. In the present article, we will call
families with two homozygous parents “noninformative
families,” and families with at least one heterozygous
parent will be referred to as “informative.” Our algo-
rithm for the construction of the most powerful FBAT
statistic can be divided into six steps. We repeat the first
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five steps of the algorithm for all possible subsets of
phenotypes, and, in the sixth step, we select the subset
of phenotypes for which the power is maximal. The
steps of the algorithm are as follows: (1) Select any
subset of phenotypes. (2) Posit a multivariate model that
describes the selected phenotypes as a function of the
genotypes. (3) Because the use of the observed offspring
genotypes in the informative families would bias the
nominal significance level of the FBAT statistic, replace
the observed offspring genotypes in the multivariate
model by their expected values conditional on the
parental genotypes or the sufficient statistic (Rabin-
owitz and Laird 2000). (4) For this adjusted multivar-
iate model, estimate the effect-size parameters, using the
generalized estimating equation approach of Liang and
Zeger (1986), which is robust against misspecification
of the environmental variance. (5) Using the approach
to conditional power calculation described by Lange
and Laird (2002b), estimate the power for the selected
phenotypes when tested simultaneously by the FBAT–
generalized estimating equation (GEE) (Lange et al.
2003). (6) Use the multivariate FBAT-GEE on the subset
of phenotypes with maximal power.

This strategy is entirely robust against population ad-
mixture and stratification, since the decision regarding
a potential association is based solely on the FBAT-GEE
statistic, which is robust against these effects. However,
population admixture and stratification that are not
accounted for in the multivariate model for the phe-
notypes will affect the performance of the phenotype
selection. Consequently, population admixture and strat-
ification will have an influence on the power of our
testing strategy, but the strategy itself remains robust
against these effects. Since our approach utilizes the data
on all available families to estimate the effect size of the
tests, it is far more powerful than standard univariate
or multivariate FBATs, even in the presence of popu-
lation admixture and stratification. The practical rele-
vance and the robustness of our approach will be further
illustrated by application to an asthma study (DeMeo
et al. 2002). Using simulation studies, we compare our
approach with other approaches to multiple testing, in
the presence and absence of population admixture and
stratification and for ascertained samples.

It is important to note that the approach discussed
here can be applied only when there is variation in the
phenotypes. For data sets obtained through a strong
ascertainment condition for the analyzed phenotypes
(i.e., only affected offspring are ascertained), the effect-
size estimates must be obtained from an independent
sample with phenotypic variation. The approach will
be outlined for quantitative traits. When other types of
phenotypes are observed (e.g., counts or dichotomous
variables), generalized linear models (McCullagh and
Nelder 1989) can be used for the effect-size estimates.

Methods

In this section, we explain the methodology used to es-
timate the power of FBATs for a given data set without
biasing the nominal significance level. In principle, the
proposed methodology must be applied to all possible
subsets of phenotypes, to obtain the subset with the best
result. To keep the derivations and equations simple, we
assume that a biallelic marker with alleles A and B is
given and that the marker locus is the disease locus. The
allele frequency of the disease gene will be denoted by
p. Furthermore, n independent families are sampled, and
the ith family has offspring. The number of trans-mi

mitted A alleles for the jth offspring in the ith family is
given by , with . For each offspring, KX X p 0,1,2ij ij

traits are recorded and denoted by . The K-y , … ,yij1 ijk

dimensional vector of phenotypes for the jth offspring
in the ith family is defined by . In thety p (y , … ,y )ij ij1 ijk

present article, we assume that the parental genotypes
are observed and are denoted in the ith family by andpi1

. However, the proposed methodology extends readilypi2

to scenarios in which parental information is missing,
as outlined by Laird et al. (2000).

For simplicity, we assume that the effect of the un-
derlying quantitative trait loci (QTL) is additive. Then
the standard quantitative genetic model (Falconer and
Mackay 1997) for the phenotypic mean is given by

E(Y ) p m � a x , (1)ijk k k ij

where is the overall mean for the kth phenotype andmk

is the additive effect size for the kth phenotype. De-ak

noting the vector of phenotypes for the siblings in the
ith family by , the phenotypic variancet ty p (y , … ,y )i i im1 1

for the ith family is defined by

Var(Y ) p V , (2)i i

where is a ( ) variance matrix with com-V Km # Kmi i i

ponents that are attributable to the putative QTL and
to shared environmental and polygenic effects (Abecasis
et al. 2000).

Most power calculations are hypothetical, in that the
effect is prespecified. However, with family-basedak

studies, we are in the unique situation that we can es-
timate from the data without biasing the test results.ak

Because we will later compute the FBAT-GEE statistic
that uses the offspring marker scores in the informative
families, we can use only equation (1) for parameter
estimation when the family is noninformative (both par-
ents are homozygous) and is consequently not included
in the computation of the FBAT statistic. Estimation of
the model parameters in equation (1) on the sole basis
of noninformative families is problematic for two rea-
sons. First, since the number of noninformative families
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may be small compared with the total number of families,
the mean parameter estimates will not be very efficient
when estimated solely on the basis of the data of the
noninformative families. Furthermore, since the parents
in noninformative families are homozygous, their off-
springs’ genotypes are also predominantly either 0 or 2,
unless the allele frequency is ∼0.5. The distribution of
the marker scores used for the estimation of the genetic-
effect sizes would therefore be highly skewed to either
the left or the right. This extreme skewedness can make
the estimation of the mean parameters unstable, and phe-
notypic outliers become highly influential.

To permit the use of both informative and noninfor-
mative families for the effect-size estimation without
biasing the resulting test statistic, we replace the marker
score in equation (1) by its expected value conditionalxij

on the parental genotypes ,E(X Fp ,p )ij i i1 2

( )E Y Fp ,p pm � a E(X Fp ,p ) . (3)ijk i i k k ij i i1 2 1 2

It is important to note that equation (3) simplifies to
(1) when the family is noninformative, because then the
observed marker score and the expected markerxijk

are identical, that is, .E(X Fp ,p ) x p E(X Fp ,p )ij i i ij ij i i1 2 1 2

Since the test statistic is based on the use of offspring
genotypes conditional on parental genotypes, the use of
equation (1) to estimate does not bias subsequentak

testing, even in the informative families.
It should be noted that, for informative families,

replacing the offspring genotypes by the conditional
mean of the parental genotypes implies that the var-
iance assumption changes, that is, Var(YFp ,p ) pi i i1 2

. Since it is common practice to as-V � Var(aX Fp ,p )i i i i1 2

sume that the genetic variance is smallerVar(aX Fp ,p )i i i2 2

than (Falconer and Mackay 1997), the genetic vari-Vi

ance is usually ignored (Martı́nez and Curnow 1992;
Lange and Whittaker 2001). We disregard the genetic
variance in our model specifications as well and as-
sume that the phenotypic variance is given by equa-
tion (2), . We will estimate all pa-Var(YFp ,p ) p Vi i i i1 2

rameters in equations (3) and (2) by the GEE approach
(Liang and Zeger 1995). This method for estimating

and is robust against misspecification of the var-a mk k

iance assumption. The robustness of the GEE approach
is also important, because the specification of the var-
iance matrix , which describes the phenotypic corre-Vi

lation within families and within individual offspring,
is easily susceptible to errors. Using the robust effect-
size estimates, we compute the conditional power of
FBAT-GEE for the selected phenotypes, as outlined in
Lange and Laird (2002a).

Thus, we propose the following algorithm to find the
subset of phenotypes for which FBAT-GEE has optimal
power:
● Select a subset of phenotypes.

● Posit a multivariate model that describes the phe-
notypes as a function of the genotypes.

● Replace the observed offspring genotypes by the con-
ditional marker mean given the parental genotypes,
that is, .E(X Fp ,p )ij i i1 2

● Estimate the genetic effect sizes, using the GEE ap-
proach for equations (2) and (3).

● Compute the conditional power (i.e., the power of
FBAT-GEE given the observed data) for the multi-
variate FBAT-GEE test that uses the selected set of
phenotypes.

● Repeat these steps until the group of phenotypes that
has the highest power is found and then test this
subgroup for association, by use of the multivariate
FBAT-GEE.

It is important to note that a significant association
between the phenotypic data and the marker locus is
determined solely by the P value of the FBAT-GEE sta-
tistic, which is computed in the last step of the algo-
rithm, using the actually observed offspring genotypes.
Hence, our procedure is robust against population
admixture and stratification. Nevertheless, its efficiency
will be influenced by these effects.

Since the number of possible subsets of phenotypes
grows exponentially with the number of observed phe-
notypes, it will often not be feasible to compute the
power for all possible subsets. For applications to real
data sets, one might elect an upper limit for the number
of phenotypes for which the power of FBAT-GEE is
estimated. An alternative is to use forward or backward
selection strategies in the way that they are typically
used in model building for regression analysis. For ex-
ample, a potential forward selection strategy could be
described by the following algorithm: Initially select the
single phenotype with the highest estimated power.
Then, in each subsequent iteration, add the phenotype
to those already selected, which increases the power of
FBAT-GEE the most. This is repeated until the power
can not be further increased.

When the P value of the multivariate FBAT-GEE test,
computed at the end of the algorithm, is significant for
the selected group of phenotypes, all selected pheno-
types must be tested individually by univariate FBATs.
Since the multivariate FBAT-GEE and the univariate
FBATs are applied sequentially and conditional on
FBAT-GEE being significant, an overall significance level
a can be obtained, when the same significance level a

is applied in each step (i.e., first for the computation of
FBAT-GEE and then for the computation of all univar-
iate FBATs within the selected group of phenotypes).
Thus, the initial FBAT-GEE which tests for the presence
of an effect within the group of selected phenotypes,
does not require any adjustment for multiple testing.
However, when we test the selected phenotypes indi-
vidually, the univariate FBATs must be adjusted for mul-
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Table 1

Data Analysis for IL13

Method of Phenotype Selectiona FBAT-GEE P Power ˆ 2h FBAT P Power

New testing strategy (group size 3): 11.54 .009 .99
Total eosinophil count .015 7.40 .006 .57
Post bronchodilator FEV 1% predicted .002 .92 .34 .14
Albuterol use when exercising .001 .16 .69 .08

DeMeo et al. (2002) (atopy group): 12.2 .0069 .52
Total eosinophil count .015 7.40 .006 .57
Total serum IgE .005 3.6 .06 .21
No. of positive skin tests .011 .21 .64 .45

NOTE.—Note that the power estimates for the univariate FBATs are not adjusted for multiple comparisons.
To adjust for multiple testing, they must be computed for a significance level of .a p .05/3 p .013

a FEV p forced expiratory volume.

tiple comparisons. It is important to note that this ad-
justment is not as strict as when testing all available
phenotypes by univariate FBATs, since the number of
selected phenotypes is usually much smaller than the
total number of recorded phenotypes.

It is worthwhile noting that this applies only to the
FBAT-GEE testing of the composite null hypothesis of
the selected phenotypes. If the researcher wants to test
additional hypotheses, this will again entail a problem
of multiple testing.

Data Analysis: Childhood Asthma Management
Program

We applied our new approach to phenotype selection
to a collection of parent/child trios in the Childhood
Asthma Management Program (CAMP) Genetics An-
cillary Study. In the CAMP study, asthmatic children
were randomly assigned to receive one of three different
asthma treatments (CAMP 1999). Blood samples for
DNA were collected from 696 complete parent/child
trios from 640 nuclear families in the CAMP Ancillary
Genetics Study. Baseline phenotype values, before ran-
domization to treatment groups, were used in this anal-
ysis. Genotyping was performed at a polymorphism lo-
cated in the interleukin (IL) 13 gene. For our analysis,
we selected 22 phenotypes that have been analyzed else-
where (DeMeo et al. 2002); as discussed in the earlier
article, the use of univariate testing and adjustment for
multiple comparisons does not lead to an overall sig-
nificant result. DeMeo et al. therefore grouped the phe-
notypes into symptom groups and tested all phenotypes
within one group simultaneously by the multivariate
FBAT-GEE. When this strategy was used, the atopy
group (including total eosinophil count, total serum IgE,
and number of positive skin tests) showed an overall
significant result. Individual testing within the atopy
group indicated a significant association between the
SNP in the IL13 gene and total eosinophil count. Since
the grouping of phenotypes in this analysis was based
on the investigators’ clinical intuition, we will explore

here whether our data-driven testing strategy would have
led to the same result.

Assuming an additive model and a significance level
of 5%, we applied our proposed testing strategy to 22
phenotypes. Since there are 222 (4,194,304) subgroups
of phenotypes, the calculation of the conditional power
for all 4,194,304 subgroups of phenotypes is compu-
tationally intensive. We therefore decided to use the
above-described forward-selection approach to select the
phenotypes. Forward selection will also be used in the
simulation study. Table 1 shows the phenotypes that
have been selected by our testing strategy, the FBAT-
GEE result, and the estimated power of FBAT-GEE. Fur-
thermore, for each trait, the estimated effect size, the
univariate FBAT result, and the power of the univariate
FBAT are given. These values are not adjusted for mul-
tiple comparisons. All these quantities are also shown
for the atopy group selected by DeMeo et al. (2002).

The most important observation in table 1 is that the
variable total eosinophil count, which was the only trait
for which DeMeo et al. (2002) could establish overall
significance, is also selected by our testing strategy. Since
the FBAT-GEE result for the selected group is significant
( ) at the 5% level, one can test all phenotypesP p .009
of the group individually at an adjusted significance level
of . Again, the only variable thata p 0.05/3 p 0.017
reaches overall significance is total eosinophil count.
Thus, both analyses—the one based on symptom group
(DeMeo et al. 2002) and the testing strategy proposed
here—yield the same result.

The quantitative transmission/disequilibrium test
(QTDT) proposed by Abecasis et al. (2000) is the only
family-based association test that uses the noninfor-
mative families for the computation of the test statistic.
Lange et al. (2002) reported a P value of .010 for the
QTDT for this marker locus and total eosinophil count.
Under the assumption of a univariate strategy testing all
22 phenotypes and with adjustment for 22 comparisons,
this P value does not reach overall significance.

Furthermore, it is important to note that, by looking
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Table 2

Simulation Study: Estimated Power Levels for Significance Level
a p .01

NO. OF TRAITS

AND ALLELE

FREQUENCY

ESTIMATED POWER (MAXIMAL POWER) WHEN

h p .025 h p .050 h p .100

MI MII MI MII MI MII

22:
.05 .04 .10 (.21) .11 .35 (.44) .33 .70 (.78)
.10 .03 .10 (.23) .16 .38 (.50) .50 .76 (.84)
.20 .04 .11 (.24) .16 .39 (.53) .57 .80 (.87)

11:
.05 .06 .10 (.21) .12 .38 (.44) .40 .71 (.78)
.10 .06 .11 (.23) .18 .40 (.50) .55 .78 (.84)
.20 .05 .11 (.24) .21 .42 (.53) .62 .81 (.87)

5:
.05 .10 .14 (.21) .23 .40 (.44) .53 .72 (.78)
.10 .11 .15 (.23) .28 .43 (.50) .68 .79 (.84)
.20 .10 .16 (.24) .32 .48 (.53) .75 .84 (.87)

NOTE.—h p heritability; MI p univariate testing that is adjusted
for multiple testing; MII p the new testing strategy. Maximal power
levels are those that could be achieved when only the marker locus
that is associated with the phenotype is tested. These values were ob-
tained by using the approach described elsewhere (Lange et al. 2002).

at the power for three univariate FBATs, phenotypes can
be tested at a higher power level by FBAT-GEE than by
univariate FBATs. By combining both techniques (FBAT-
GEE and conditional power calculations) and thereby
using all the available data, it is possible to group phe-
notypes with low-powered univariate tests so that the
overall FBAT-GEE statistic has sufficient power to detect
a potential association.

Simulation Study: Power Comparison between Testing
the Most Powerful Phenotypes by FBAT-GEE and
Applying Univariate FBATs with Bonferroni Correction
to All Phenotypes

In this section, we assess the power of the proposed
testing strategy by using simulation experiments de-
signed around the asthma study described in the previous
section. As a basis for comparison, we compare our
strategy with a Bonferroni approach that uses both a
separate statistic and an adjusted a level for each phe-
notype. Although it is appropriate to use the univariate
FBAT for quantitative traits, we use the QTDT because
it also uses information from noninformative families.
We will assess the effects exerted on the power by a
variety of influences: allele frequency, heritability, the
number of phenotypes analyzed, population admixture,
and population stratification.

We assume that a sample consisting of asthmatics and
their parents is given, and we observe the genotypes of
all family members. As in the asthma study analyzed in
the previous section, we assume that, for each offspring,
22 quantitative phenotypes are measured, and we want

to test each phenotype for a potential association with
the marker locus.

The trios with a biallelic marker locus are generated
by drawing the parental genotypes and from thep p1 2

binomial distribution , where p is the allele fre-Bi(2,p)
quency of the disease gene in the population. We then
use simulated Mendelian transmissions to generate the
individual genotype . The phenotypic vector for eachx Yi i

offspring is a random sample from a multivariate normal
distribution, that is, , whereY ∼ N([a x , … ,a x ],V) ai 1 i 22 i k

is the additive effect for the kth phenotype and V p
is the variance matrix. We measure the2(j ) (22 # 22)k,l

strength of the additive effect relative to the phenotypic
variance by the heritability (Falconer and Mackay2hk

1997), which is the proportion of phenotypic variation
explained by the genetic variation—that is, 2h pk

. This expression for can be solved2Var (a X ) /Var (Y ) hk i ik

for (Lange and Laird 2002a). We assume that theak

environmental variance for each phenotype is 1 and the
environmental correlation matrix is given by the en-V
vironmental correlation matrix of the asthma study dis-
cussed in the previous section. The environmental cor-
relation values of this matrix are shown in figure 1.

In each replicate of the simulation study, we generate
300 trios in which each offspring has 22 phenotypes. A
value of 1% is selected as the overall significance level.
For the 22 phenotypes, we assume that only one phe-
notype ( ) is associated with the marker locus anda ( 0j0

that the other phenotypes are not associated with the
locus ( ). To compare the performance of the pro-a p 0j

posed testing strategy with the standard methodology,
we test each phenotype by QTDT and adjust the P value
for multiple comparisons by the Bonferroni correction
(i.e., ). Elsewhere (Lange et al. 2003), we also used1%/22
the Hochberg correction and permutation tests to handle
multiple testing. Because these methods did not show a
useful improvement over the Bonferroni correction and
because they are computationally much slower (permu-
tation tests), we omit these methods here. Instead, we
apply our new testing strategy for multiple phenotypes,
and we use the computationally fast forward-selection
approach.

The selected phenotypes are tested for association with
FBAT-GEE at a 1% significance level. If FBAT-GEE shows
a significant result, all phenotypes of the group are tested
individually by univariate FBATs, which are adjusted for
multiple testing within the group of selected phenotypes.
It is important to note that, because only one FBAT-GEE
is initially computed, no adjustment for multiple com-
parisons is needed for the P value of FBAT-GEE.

For each alternative hypothesis H :a ( 0,j pA j 00

, we repeated the simulation study 100,0001, … ,22
times. The power for each testing strategy was estimated
by the proportion of the number of times the single
phenotype associated with the locus is declared sig-



806 Am. J. Hum. Genet. 73:801–811, 2003

Figure 1 Histogram of environmental correlations

nificant. The averages of the power estimates for the
22 phenotypes/alternative hypotheses H :a ( 0,˜A j0

are shown in table 2. By use of the ap-j p 1, … ,220

proach to power calculations described elsewhere (Lange
et al. (2002), table 2 also shows the power of the FBATs
under the assumption that only the phenotype associated
with the marker locus is tested. Since this is the optimal-
case scenario, these power calculations are an upper limit
for our testing strategy. Table 2 also shows the estimated
power levels when, instead of 22 phenotypes, 11 and 5
phenotypes are analyzed. To estimate the significance
levels for both approaches, we repeated the simulation
study under the assumption that no trait is associated
with the marker locus. The estimated significance levels
for analysis of 22 phenotypes are shown in table 3.

Tables 2 and 3 show clearly that our new testing strat-
egy can be substantially more powerful than univariate
testing with Bonferroni correction, especially for low al-
lele frequencies, small heritabilities, and cases in which
many phenotypes must be tested. The power of our test-
ing strategy increases slightly when the allele frequency
is increased. Since, for higher allele frequencies, the num-
ber of noninformative families becomes smaller, this
observation clearly illustrates the importance of also in-

cluding the informative families in the effect-size esti-
mation (equation [1]). Table 2 shows that reducing the
number of phenotypes increases the power of our testing
strategy only slightly; however, when the number of phe-
notypes is reduced, the differences between univariate
testing adjusted by Bonferroni correction and our testing
strategy become smaller. Nevertheless, it is worth noting
that, even when only 5 phenotypes are analyzed, the
advantages of our testing strategy are still of practical
relevance. It is even more important to note that the
power of our strategy decreases only moderately when
the number of phenotypes from is increased 5 to 22.
Comparing the power achieved by our testing strategy
with the maximal possible power obtained by the ap-
proach by Lange et al. (2002), we observe that our test-
ing strategy is 5%–14% less powerful than the optimal-
case scenario. All these observations suggest that our
testing strategy is especially powerful when many phe-
notypes are observed and we do not know the phenotype
with the strongest genetic component for that candidate
locus prior to the analysis.

The estimated significance levels indicate that our test-
ing strategy is still too conservative, which is most likely
caused by the Bonferroni corrections for the univariate
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Table 3

Simulation Study for 22 Phenotypes:
Estimated Significance Levels for the New
Testing Strategy for Nominal Significance
Level a p .01

ALLELE

FREQUENCY

ESTIMATED SIGNIFICANCE

LEVELS FOR

MI MII

.05 .00019 .0030

.10 .00032 .0030

.20 .00020 .0021

NOTE.—MI p univariate testing that is ad-
justed for multiple testing; MII p the new
testing strategy.

Table 4

Simulation Study: Estimated Significance Levels for the New Testing Strategy for Nominal
Significance Level a p .01

ALLELE

FREQUENCY

ESTIMATED SIGNIFICANCE WHEN

s p .025 s p .50 s p .100 s p .200

MI MII MI MII MI MII MI MII

.05 � 25%/2 .00034 .00049 .00026 .00049 .00024 .00049 .00028 .00049

.10 � 25%/2 .00024 .00049 .00029 .00049 .00036 .00049 .00029 .00050

.20 � 25%/2 .00022 .00049 .00027 .00049 .00027 .00049 .00024 .00048

.05 � 50%/2 .00027 .00050 .00021 .00049 .00027 .00051 .00030 .00049

.10 � 50%/2 .00031 .00049 .00029 .00049 .00017 .00049 .00027 .00099

.20 � 50%/2 .00031 .00049 .00022 .00049 .00023 .00099 .00026 .00149

.05 � 100%/2 .00026 .00099 .00017 .00080 .00020 .00049 .00023 .00099

.10 � 100%/2 .00029 .00099 .00030 .00099 .00031 .00149 .00022 .00199

.20 � 100%/2 .00022 .00109 .00020 .00099 .00025 .00241 .00014 .00199

NOTE.—s p strength of population stratification; MI p univariate testing that is adjusted for
multiple testing; MII p the new testing strategy.

FBATs when testing within the group of selected phe-
notypes (table 3). On average, our testing strategy selects
three phenotypes to be tested with FBAT-GEE.

Population Admixture and Stratification

We repeated the simulation study for scenarios with
population admixture and stratification. As described
elsewhere (Abecasis et al. 2000), we generated the pop-
ulation admixture by mixing two distinct populations
of equal size. For each subpopulation, we assumed dif-
ferent allele frequencies and different phenotypic means
(i.e., admixture and stratification). The allele frequencies
in each subpopulation were constructed by adding and
subtracting a certain percentage from the original allele
frequencies in the first simulation study, that is, p �

and . The strength of the stratification isx% p � x%
measured by the proportion of phenotypic variance due
to the different phenotypic means in both subpopula-
tions (Abecasis et al. 2000). The means in the two sub-
populations were selected so that the subpopulation with

the smaller allele frequency has the higher phenotypic
mean. For a population-based analysis, this stratification
would suggest a trend in the direction opposite to that of
the true underlying additive effect, under the assumption
that .a 1 0j

Assuming that the sample size is 300 and that 22
phenotypes are observed, we repeated the simulation
study for a variety of values for population admixture
and stratification. For univariate testing adjusted for
multiple comparisons and for our new testing strategy,
table 4 lists the estimated significance level for a nominal
a level of .01. Table 4 shows that, in the presence of
population admixture and stratification, the nominal a

level is maintained for our new testing strategy, which
is still too conservative. This observation confirms our
theoretical conclusion that our testing strategy is robust
against such effects.

The estimated power levels (table 5) suggest that our
new testing strategy outperforms univariate testing, even
in the presence of population admixture and stratifica-
tion. For most scenarios, the advantages are substantial
(gain of power of as much as 30%). However, for some
scenarios, the estimated power levels of the two ap-
proaches become virtually identical. Table 5 suggests
that, in general, one will not lose power by using our
new testing strategy, even in the presence of population
admixture and stratification.

The observation that our new testing strategy per-
forms very well can be explained by the way the phe-
notypes are selected. The optimal combination of phe-
notypes is defined not by the absolute estimate for its
power but through its ranking compared with the other
groups of phenotypes. It seems that, because the other
groups of phenotypes are also affected by admixture and
stratification, the ranking based on the estimated power
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Table 6

Simulation Study: Estimated Power Levels for Significance Level
when the Sample Is Obtained through an Ascertainmenta p .01

Condition

ASCERTAINMENT

CONDITION,
TRAIT USED, AND

ALLELE FREQUENCY

ESTIMATED POWER LEVELS WHEN

h p .025 h p .050 h p .100

MI MII MI MII MI MII

Lower 5% and upper 5%:
Associated

.05 .77 .60 .97 .82 1.00 .85

.10 .81 .63 .96 .93 1.00 .94

.20 .81 .63 .98 .98 1.00 .98
Not associated

.05 .06 .09 .11 .28 .37 .61

.10 .07 .10 .16 .31 .49 .68

.20 .07 .11 .18 .32 .50 .72
Upper 10%:

Associated
.05 .37 .26 .64 .49 .95 .51
.10 .39 .34 .80 .52 1.00 .53
.20 .45 .45 .90 .56 1.00 .96

Not associated
.05 .04 .08 .12 .27 .38 .67
.10 .05 .08 .17 .28 .50 .70
.20 .05 .09 .18 .29 .51 .71

NOTE.—h p heritability; MI p univariate testing that is adjusted
for multiple testing; MII p the new testing strategy.

of the phenotype groups is relatively well preserved in
the presence of admixture and stratification. However,
the actual estimates of the power may be biased.

Ascertained Samples

Finally, we repeated the simulation study for samples
that are obtained through an ascertainment condition.
Here, we assumed that population admixture and strat-
ification are absent and that 22 phenotypes are observed
for each offspring. First, the simulation study was re-
peated under the assumption that the researcher cor-
rectly anticipates the phenotype that is associated with
the marker locus and ascertains the data set by sampling
in equal parts from the upper 5% tail and the lower 5%
tail of the distribution of this phenotype. Both testing
strategies are then applied to the 22 phenotypes of the
ascertained sample. The power levels, estimated on the
basis of 100,000 replicates, are shown in table 6.

The same simulation studies were then repeated under
the assumption that the researcher selects a phenotype
that is not associated with the marker locus and uses
this phenotype to ascertain the sample as before. In the
simulation study, we mimicked this “unlucky” choice by
randomly selecting a phenotype from the 21 phenotypes
that are not associated with the marker locus and using
this phenotype in the ascertainment condition. The es-
timated power levels, based on 100,000 replicates, for
this scenario are also given in table 6.

The results in table 6 clearly illustrate that, if the re-
searcher ascertains the samples through an ascertain-
ment condition for the trait that is associated with the
marker locus, univariate testing adjusted for multiple
testing can be substantially more powerful than our test-
ing strategy. However, when the researcher is less for-
tunate in selecting the phenotype and elects a phenotype
for the ascertainment condition that is not in association
with the locus, our new testing strategy again dramat-
ically outperforms univariate testing. For this scenario,
the estimated power levels of the new testing strategy
are only slightly lower than those for total population
samples (table 2). It is also worth noting that in a real-
life situation one would not assign equal a levels to each
phenotype in the univariate testing strategy (i.e., )a/22
but would emphasize the selected trait (e.g., )0.9 # a

for the selected trait and ( ) for the remaining0.1 # a/21
21 phenotypes. For all scenarios shown in table 6, such
weighted a levels will make the differences between both
testing strategies even greater.

To assess the effects of different ascertainment con-
ditions on the power of both testing strategies, the sim-
ulation studies for both scenarios were repeated under
the assumption that only the upper 10% tail of the phe-
notypic distribution of the selected trait is ascertained
(table 6). Although the estimated power levels are, in
general, slightly lower for this ascertainment condition
( ), they do not differ substantially from the re-Y 1 10%
sults for the first ascertainment condition ( orY 1 5%

).Y ! 5%
Therefore, in practice, before the data are collected,

researchers must decide how confident they are of being
able to identify the correct phenotype for the ascertain-
ment condition. If the investigator strongly believes that
the correct phenotype can be identified, ascertaining the
data through an ascertainment condition on the iden-
tified phenotype and using univariate tests will be more
powerful than our testing strategy. However, when re-
searchers do not have a good intuition about the phe-
notypes with the strongest genetic component, they may
find it less risky to collect a total population sample with
a set of relevant phenotypes. This strategy has the ad-
ditional advantages that the financial resources used in
the screening process to ascertain a sample can be re-
directed and used to obtain an even bigger total popu-
lation sample, which will further increase the power of
our new testing strategy.

Discussion

In the present article, we propose a new sequential test-
ing strategy for family-based association tests when mul-
tiple phenotypes are recorded. The approach allows us
to screen all possible null hypotheses without biasing the
overall significance level and to select a group of phe-
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notypes that can be tested with maximal power. Al-
though the approach uses all the available data, the non-
informative families as well as the informative ones, it
is robust against population admixture and stratifica-
tion. The approach is relatively simple, takes advantage
of all available data, even the noninformative families,
requires no adjustments for multiple testing, dramati-
cally outperforms univariate testing with Bonferroni cor-
rection, and is fairly robust against population admix-
ture and stratification. Researchers can use our approach
whenever many phenotypes are recorded and it is not
obvious which phenotypes are most relevant for the
marker locus.

In general, the success of our testing strategy will
depend upon how well equations (2) and (3) describe
the phenotypic data. Since the parameters in equation
(2) and (3) can be estimated as many times as wanted
without biasing the nominal significance level of the
FBAT-GEE statistic, it is recommended to do statistical
model building for equations (2) and (3) before finally
estimating the power of FBAT-GEE. For example, when
other variables are known to have an influence on the
modeled phenotype/trait, these variables should be in-
cluded in the model equation for the mean (1) as co-
variates, to avoid confounding of the estimates for the
genetic effect sizes (Lange et al., in press). Also, dif-
ferent modes of inheritance (e.g., dominant or reces-
sive) should be explored in equations (2) and (3) to
prevent biased estimates for the power of FBAT-GEE.
Furthermore, if the data are not normally distributed,
one can use multivariate models designed for nonnor-
mal data (Prentice and Zhao 1991) to model the phe-
notypes as a function of the conditional marker score.

The main approach of the present article, that is, con-
ditional power calculations using genetic effects esti-
mated by the biometrical model for the phenotypes
where the offspring genotypes are replaced by their ex-
pected values conditional on the parental genotypes, can
be used for a variety of other important applications.
Since these power calculations can be applied to a set
of marker loci (e.g., scans of candidate genes), they can
be used to detect loci that have high power when tested
for association with FBATs. Again, the data used to find
these loci can later be used for the final association tests
without biasing the nominal significance level (authors’
work in progress). Furthermore, the proposed meth-
odology can be used to include predictor variables in
FBATs so that the power of the test statistic is maxi-
mized (authors’ work in progress).

A nonparametric version of the proposed methodol-
ogy is discussed elsewhere (Lange et al. in press). The
approach has been implemented in our software package
called “PBAT” and is available on the PBAT Web page.
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